25 research outputs found

    Designing a gamified social platform for people living with dementia and their live-in family caregivers

    Get PDF
    In the current paper, a social gamified platform for people living with dementia and their live-in family caregivers, integrating a broader diagnostic approach and interactive interventions is presented. The CAREGIVERSPRO-MMD (C-MMD) platform constitutes a support tool for the patient and the informal caregiver - also referred to as the dyad - that strengthens self-care, and builds community capacity and engagement at the point of care. The platform is implemented to improve social collaboration, adherence to treatment guidelines through gamification, recognition of progress indicators and measures to guide management of patients with dementia, and strategies and tools to improve treatment interventions and medication adherence. Moreover, particular attention was provided on guidelines, considerations and user requirements for the design of a User-Centered Design (UCD) platform. The design of the platform has been based on a deep understanding of users, tasks and contexts in order to improve platform usability, and provide adaptive and intuitive User Interfaces with high accessibility. In this paper, the architecture and services of the C-MMD platform are presented, and specifically the gamification aspects. © 2018 Association for Computing Machinery.Peer ReviewedPostprint (author's final draft

    Prediction of COVID-19 Cases Using Constructed Features by Grammatical Evolution

    No full text
    A widely used method that constructs features with the incorporation of so-called grammatical evolution is proposed here to predict the COVID-19 cases as well as the mortality rate. The method creates new artificial features from the original ones using a genetic algorithm and is guided by BNF grammar. After the artificial features are generated, the original data set is modified based on these features, an artificial neural network is applied to the modified data, and the results are reported. From the comparative experiments done, it is clear that feature construction has an advantage over other machine-learning methods for predicting pandemic elements

    Ambient Media and Systems

    No full text

    Automated Detection of Liver Histopathological Findings Based on Biopsy Image Processing

    No full text
    Hepatic steatosis is the accumulation of fat in the hepatic cells and the liver. Triglycerides and other kinds of molecules are included in the lipids. When there is some defect in the process, hepatic steatosis arise, during which the free fatty acids are taken by the liver and exuded as lipoproteins. Alcohol is the main cause of steatosis when excessive amounts are consumed for a long period of time. In many cases, steatosis can lead to inflammation that is mentioned as steatohepatitis or non-alcoholic steatohepatitis (NASH), which can later lead to fibrosis and finally cirrhosis. For automated detection and quantification of hepatic steatosis, a novel two-stage methodology is developed in this study. Initially, the image is processed in order to become more suitable for the detection of fat regions and steatosis quantification. In the second stage, initial candidate image regions are detected, and then they are either validated or discarded based on a series of criteria. The methodology is based on liver biopsy image analysis, and has been tested using 40 liver biopsy images obtained from patients who suffer from hepatitis C. The obtained results indicate that the proposed methodology can accurately assess liver steatosis

    Training of Deep Convolutional Neural Networks to Identify Critical Liver Alterations in Histopathology Image Samples

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is responsible for a wide range of pathological disorders. It is characterized by the prevalence of steatosis, which results in excessive accumulation of triglyceride in the liver tissue. At high rates, it can lead to a partial or total occlusion of the organ. In contrast, nonalcoholic steatohepatitis (NASH) is a progressive form of NAFLD, with the inclusion of hepatocellular injury and inflammation histological diseases. Since there is no approved pharmacotherapeutic solution for both conditions, physicians and engineers are constantly in search for fast and accurate diagnostic methods. The proposed work introduces a fully automated classification approach, taking into consideration the high discrimination capability of four histological tissue alterations. The proposed work utilizes a deep supervised learning method, with a convolutional neural network (CNN) architecture achieving a classification accuracy of 95%. The classification capability of the new CNN model is compared with a pre-trained AlexNet model, a visual geometry group (VGG)-16 deep architecture and a conventional multilayer perceptron (MLP) artificial neural network. The results show that the constructed model can achieve better classification accuracy than VGG-16 (94%) and MLP (90.3%), while AlexNet emerges as the most efficient classifier (97%)

    An optimized hybrid methodology for non-invasive fetal electrocardiogram signal extraction and monitoring

    No full text
    Background and objective: Electronic fetal heart monitoring is currently used during pregnancy throughout most of the developed world to detect risk conditions for both the mother and the fetus. Non-invasive fetal electrocardiogram (NI-fECG), recorded in the maternal abdomen, represents an alternative to cardiotocography, which could provide a more accurate estimate of fetal heart rate. Different methodologies, with varying advantages and disadvantages, have been developed for NI-fECG signal detection and processing. Methods: In this context, we propose a hybrid methodology, combining independent component analysis, signal quality indices, empirical mode decomposition, wavelet thresholding and correlation analysis for NI-fECG optimized signal extraction, denoising, enhancement and addressing the intrinsic mode function selection problem. Results: The methodology has been applied in four different datasets, and the obtained results indicate that our method can produce accurate fetal heart rate (FHR) estimations when tested against different datasets of variable quality and acquisition protocols, on the FECGDARHA dataset our method achieved average values of Sensitivity = 98.55%, Positive Predictive Value = 91.73%, F1 = 94.92%, Accuracy = 90.91%, while on the ARDNIFECG dataset it achieved average values of Sensitivity = 92.96%, Positive Predictive Value = 91.66%, F1 = 93.60%, Accuracy = 90.45%. Conclusions: The proposed methodology is completely unsupervised, has been proven robust in different signal-to-noise ratio scenarios and abdominal signals, and could potentially be applied to the development of real-time fetal monitoring systems
    corecore